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We introduce gg, a framework that helps people execute everyday 
applications—software compilation, unit tests, video encoding, 
or object recognition—using thousands of parallel threads on a 

“serverless” platform to achieve near-interactive completion times. We envi-
sion a future where instead of running these tasks on a laptop, or keeping a 
warm cluster running in the cloud, users push a button that spawns 10,000 
parallel cloud functions to execute a large job in a few seconds from start. 
gg is designed to make this practical and easy.

A third of a century ago, interactive personal computing changed the way the computers 
were used and markedly increased global productivity. Nevertheless, even today, many 
applications remain far from interactive: compiling a large software package can take hours; 
processing an hour of 4K video typically needs more than 30 CPU-hours; and a single frame 
from the animated movie Monsters University takes 29 hours to render [8]. Users who wants 
to explore or tinker and desire feedback in seconds need to harness thousands of cores in 
parallel, far exceeding the available compute power in laptops and workstations and leading 
users towards rented compute resources in large-scale datacenters—the cloud.

However, outsourcing a job to thousands of threads in the cloud presents its own challenges. 
For one, maintaining a warm cluster of thousands of CPU cores in the form of VMs is not 
cost-effective for occasional short-lived jobs. Provisioning and booting a cluster of VMs on 
current commercial services can also take several minutes, leaving end users with no practi-
cal option to scale their resource footprint on demand in an efficient and scalable manner.

Meanwhile, a new category of cloud-computing resources has emerged that offers finer 
granularity and lower latency than traditional VMs: cloud functions, also called serverless 
computing. Amazon’s Lambda service will rent a Linux container for a minimum of 100 
ms, with a startup time of less than a second and no charge when idle. Google, Microsoft, 
 Alibaba, and IBM have similar offerings.

Cloud functions were intended for asynchronously invoked microservices, but their granu-
larity and scale sparked our interest for a different use: as a burstable supercomputer-on-
demand. As part of building our massively parallel, low-latency video-processing system, 
ExCamera [4], we found that thousands of cloud functions can be invoked in a few seconds 
with inter-function communication over TCP, effectively providing something like a rented 
10,000-core computer billed by the second. ExCamera’s unorthodox use of a cloud-functions 
service has been followed by several subsequent systems, including PyWren [6], Sprocket [2], 
Cirrus, Serverless MapReduce, and Spark-on-Lambda. These systems all launch a burst- 
parallel swarm of thousands of cloud functions, all working on the same job, to provide 
results to an interactive user.

Challenges of Building Burst-Parallel Applications
Despite the above, building new burst-parallel applications on thousands of cloud  functions 
has remained a difficult task. Each application must overcome a number of challenges 
endemic to this environment: (1) workers are stateless and may need to download large 
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amounts of code and data on startup; (2) workers have limited runtime before they are killed; 
(3) on-worker storage is limited but much faster than off-worker storage; (4) the number of 
available cloud workers depends on the provider’s overall load and can’t be known precisely 
upfront; (5) worker failures are more likely to occur when running at large scale; (6) libraries 
and dependencies differ in a cloud function compared with a local machine; and (7) latency 
to the cloud makes roundtrips costly.

In this article, we present gg, a general system designed to help application developers man-
age the challenges of creating burst-parallel cloud-function applications. Instead of directly 
targeting a cloud-functions infrastructure, application developers express their jobs in gg’s 
intermediate representation (gg IR), which abstracts the application logic from its placement, 
schedule, and execution. This portable representation allows gg to run the same application 
on a variety of compute and storage platforms, and provides runtime features that address 
underlying challenges, such as dependency management, straggler mitigation, placement, 
and memoization. Figure 1 illustrates the overall architecture of gg.

gg can containerize and execute existing programs, e.g., software compilation, unit tests, 
video encoding, or searching a movie with an object-recognition kernel. gg does this with 
thousands-way parallelism on short-lived cloud functions. In some cases, this yields consid-
erable benefits in terms of performance. For example, compiling the Inkscape graphics editor 
on AWS Lambda using gg was almost 5x faster than an existing system (icecc) running on a 
384-core cluster of warm VMs. 
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Figure 1: gg helps applications express their jobs in an intermediate representation that abstract the 
 application logic from its placement, schedule, and execution, and provides back-end engines to execute 
the job on different cloud-computing platforms.

Figure 2: An example thunk for preprocessing a C program, hello.c. The thunk is named by the hash of its 
content, T0MEiRL. The hash starts with T to mark it as a thunk rather than a primitive value. Other thunks 
can refer to its output by using this hash.
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Thunks: Transient Functional Containers
The heart of gg IR is an abstraction that we call a thunk. In the functional-programming 
literature, a thunk is a parameterless closure that captures a snapshot of its arguments and 
environment for later evaluation. The process of evaluating the thunk—applying the function 
to its arguments and saving the result—is called forcing it [1].

Building on this concept, gg represents a thunk with a description of a container that identi-
fies, in content-addressed manner, an x86-64 Linux executable and all of its input data 
objects. The container is hermetically sealed and meant to be referentially transparent; it is 
not allowed to use the network or access unlisted objects or files. The thunk also describes 
the arguments and environment for the executable and a list of tagged output files that it will 
generate—the results of forcing the thunk. Figure 2 shows an example thunk for preprocess-
ing a C source file. Since the thunk captures the full functional footprint of a function, it can 
be executed in any environment capable of running an x86-64 Linux executable.

All the objects, including the input files, functions, and thunks are named by their hashes. 
More precisely, the name of an object has four components: (1) whether the object is a primi-
tive value (hash starting with V) or refers to the result of forcing some other thunk (hash 
starting with T), (2) a SHA-256 hash of the value’s or thunk’s content, (3) the length in bytes, 
and (4) an optional tag that names an object or a thunk’s output.

Because the objects are content-addressed, they can be stored on any mechanism capable of 
producing a blob that has the correct name: durable or ephemeral storage (e.g., S3, Redis, or 
Bigtable), a network transfer from another node, or by finding the object already available in 
RAM from a previous execution.

From our experiences of working with the system, we expect gg thunks to be simple to imple-
ment and reason about, straightforward to execute, and well matched to the statelessness 
and unreliability of cloud functions.

gg IR: A Lazily Evaluated Lambda Expression
The structure of interdependent thunks—essentially a lambda expression—is what defines 
the gg IR. This representation exposes the computation graph to the execution engine, along 
with the identities and sizes of objects that need to be communicated between thunks. For 
example, the IR representing the expression Assemble(Compile(Preprocess(hello.c))) con-
sists of three thunks, as depicted in Figure 3. Each stage refers to the previous stage’s output 
by using the thunk’s hash.

Figure 3: An example of gg IR consisting of three thunks for building a “Hello, World!” program that rep-
resents the expression Assemble(Compile(Preprocess(hello.c))) → hello.o. To produce the final 
output hello.o, thunks must be forced in order from left to right. Other thunks, such as the link operation, 
can reference the last thunk’s output using its hash, T42hGtG. Hashes have been shortened for display.
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The IR allows gg to schedule jobs efficiently, mitigate the effect 
of stragglers by invoking multiple concurrent thunks on the criti-
cal path, recover from failures by forcing a thunk a second time, 
and memoize thunks to avoid repetitive work. This is achieved 
in an application-agnostic, language-agnostic manner. Based on 
the data exposed by the IR, back ends can schedule the forcing 
of thunks, place thunks with similar data-dependencies or an 
output-input relationship on the same physical infrastructure, 
and manage the storage or transfer of intermediate results, with-
out roundtrips back to the user’s own computer.

Front-End Code Generators and Back-End 
Execution Engines
Front ends are the programs that emit gg IR (Figure 1). Most 
of the time, we expect the applications to write out thunks by 
explicitly providing the executable and its dependencies. This 
can be done through a command-line tool provided by gg (i.e., gg 
create-thunk) or by using the C++ and Python SDKs that expose 
a thunk abstraction and allow the developer to describe the 
application in terms of thunks. For one application, software 
compilation, we developed a technique called model substitution 
that is designed to extract gg IR from an existing build system, 
without actually compiling the software. In the next section, we 
will describe the details of this technique.

The execution of gg IR is done by the back ends and requires 
two components: an execution engine for forcing the individual 
thunks, and a content-addressed storage engine for storing the 
named blobs referenced or produced by the thunks. We imple-
mented five compute engines (a local machine, a cluster of warm 
VMs, AWS Lambda, IBM Cloud Functions, and Google Cloud 
Functions) and three storage engines (S3, Google Cloud Storage, 
and Redis).

gg’s approach of abstracting front ends from back ends allows 
the applications and the back-end engines to evolve and improve 
independently. The developers can focus on building new appli-
cations on top of gg abstractions and, at the same time, benefit 
from the improvements made to the execution back ends. More-
over, special-purpose execution engines can be built to match 
the unique characteristics of a certain job without changing the 
IR description of the application.

As an example, our default AWS Lambda/S3 back end invokes 
a new Lambda for each thunk. Upon completion, a Lambda 
uploads its outputs to S3 for other workers to download and 
use. However, for applications like ExCamera that deal with 
large input/output objects, the roundtrips to S3 can negatively 
affect the performance. To improve the performance of such 
applications, we made a “long-lived” AWS Lambda engine, where 
each worker stays up until the whole job finishes and seeks out 
new thunks to execute. The execution engine keeps an index 
of objects present on each worker’s local storage and uses that 
information to place thunks on workers with the most data avail-
able, in order to minimize the need to fetch dependencies from 
the storage back end.

Software Compilation with gg
Software compilation has long been a prime example of non-
interactive computing. For instance, compiling the Chromium 
Web browser, one of the largest open-source projects, takes more 
than four hours on a 4-core laptop. Many solutions have been 
developed to leverage warm machines in a local cluster or cloud 
datacenter (e.g., distcc or icecc). We developed such an applica-
tion on top of gg that can outsource a compilation job to thou-
sands of cloud functions.

Build systems are often large and complicated. The application 
developers have spent a considerable amount of time crafting 
Makefiles, CMakeLists.txt files, and build.ninja files for their 
projects, and manually converting them to gg IR is virtually 
impossible. We developed a technique called model substitution 
that can automatically extract a gg IR description from an exist-
ing build system.

We run the build system with a modified PATH so that each stage 
is replaced with a stub: a model program that understands the 
behavior of the underlying stage well enough so that when the 
model is invoked in place of the real stage, it can write out a 
thunk that captures the arguments and data that will be needed 
in the future; forcing the thunk will then produce the exact 
output that would have been produced during actual execution. 
We used this technique to infer gg IR from the existing build 
systems for several large open-source applications, including 

Local (make) Distributed (icecc) Distributed (gg)
1 core 48 cores 48 cores AWS Lambda

FFmpeg 06m 9s 20s 01m 03s 44s±04s

GIMP 06m 48s 49s 02m 35s 01m 38s±03s

Inkscape 32m 34s 01m 40s 06m 51s 01m 27s ±07s

Chromium 15h 58m 20s 38m 11s 46m 01s 18m 55s ±10s

Table 1: Comparison of cold-cache build times in different scenarios. gg on AWS Lambda is competitive with or faster than using conventional outsourcing 
(icecc) and, in the case of the largest programs, is 2–5 faster. This includes both the time required to generate gg IR from a given repository using model 
substitution and the time needed to execute the IR.
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OpenSSH, the FFmpeg video system, the GIMP image editor, 
the Inkscape vector graphics editor, and the Chromium browser, 
with no changes to the original build system or user interven-
tion. Table 1 shows a summary of the results for four open-
source projects. gg on AWS Lambda is about 2–5 faster than 
a conventional tool (icecc) in building medium- and large-sized 
software packages.

As an example, we will go through the steps of building the 
FFmpeg video system with gg. First, the user clones the repo and 
execute ./configure script to generate the Makefiles:

sadjad@˜$ git clone https://git.ffmpeg.org/ffmpeg.git

sadjad@˜$ [install ffmpeg build dependencies]

sadjad@˜$ cd ffmpeg

sadjad@ /̃ffmpeg$ ./configure --disable-doc --disable-x86asm

Next, the user runs gg init in the program’s root, which will cre-
ate a directory named gg. This directory will contain the gener-
ated thunks and local cache entries:

sadjad@ /̃ffmpeg$ gg init

To compile the project with gg, first we need to extract an IR 
description from the build system, which is done by running the 
normal build command (make in this case), prefixed by gg infer:

sadjad@ /̃ffmpeg$ gg infer *make -j$(nproc)* 

This command will execute the underlying build system, but it 
modifies the PATH so that each stage of the build is replaced with 
a model program, which writes out a thunk for that stage. After 
the IR generation is done, the build targets are created, but their 
contents are not what we would normally expect:

sadjad@ /̃ffmpeg$ cat ffmpeg

#!/usr/bin/env gg-force-and-run

Te6aLo5FtpPyyGY.CsF8PHGY5WS61AlmbcUNGA1tG9Cs00000179

This is a placeholder, and it expresses that the actual ffmpeg 
binary is the output of the thunk with the hash Te6aLo5F... (the 
content of this thunk can be inspected by using the gg describe 
utility). Running this script forces this thunk, replaces itself 
with the output, and then executes it. The user can also manually 
force this thunk by using the gg force utility:

sadjad@ /̃ffmpeg$ gg force --jobs *1500* --engine *lambda* 

ffmpeg

* Loading the thunks... done (233 ms).

* Uploading 4663 files (81.8 MiB)... done (6985 ms).

  ...

* Downloading output file (16.7 MiB)... done (1131 ms).

This command specifies that the user wants to run this job with 
1500-way parallelism on AWS Lambda. First, all the necessary 
input files are uploaded to the storage engine in one shot. Then 

the program forces all the necessary thunks recursively until 
obtaining the final result. After the output is downloaded, the 
ffmpeg binary can be executed, as if it were built on the local 
machine:

sadjad@ /̃ffmpeg$ ./ffmpeg

ffmpeg version N-94028-gb8f1542dcb Copyright (c) 2000-2019 

the FFmpeg developers

Unit Testing with gg
Software test suites are another set of applications that can ben-
efit from massive parallelism, as each test is typically a stand-
alone program that can be run in parallel with other tests, with 
no inter-dependencies. Using gg’s C++ SDK, we implemented a 
tool that can generate gg IR for unit tests written with Google 
Test, a popular C++ test framework used by projects like LLVM, 
OpenCV, Chromium, Protocol Buffers, and the VPX video codec 
library.

For code bases with large numbers of test cases, this can yield 
major improvements. For example, the VPX video codec library 
contains more than 7,000 unit tests, which take more than 50 
minutes to run on a 4-core machine. Using the massive parallel-
ism available, gg is able to execute all of these test cases in paral-
lel in less than four minutes, with 99% of the test cases finishing 
within the first 30 seconds. From a developer’s point of view, this 
improves turnaround time and translates into faster discovery 
of bugs and regressions.

In addition to software compilation and unit testing, we ported 
a number of other programs to emit gg IR, including an imple-
mentation of ExCamera on gg that, unlike the original imple-
mentation, supports memoization and failure recovery, an 
object recognition task with TensorFlow, and a Fibonacci series 
program that demonstrates gg abilities on handling dynamic 
execution graphs. For the details of these applications, we refer 
the reader to our USENIX ATC ’19 paper [3].

Figure 4: The distribution of achieved network throughputs between 
pairs of workers at five different send rates on AWS Lambda. Each point 
corresponds to a sender-receiver pair, and the lines are labeled with their 
corresponding send rates.



10   FA L L 20 19  VO L .  4 4 ,  N O.  3  www.usenix.org

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

Next Steps: Direct Communication 
between Workers
Many of the applications that can benefit from burst-parallel 
execution are not embarrassingly parallel—they can have 
complex dataflow graphs and require moving large amounts of 
data between workers. It has generally been understood that 
Lambdas cannot accept incoming network connections [5]. As 
a result, Lambda-computing tools have retreated to exchanging 
data between workers only indirectly. For example, ExCamera 
achieves this through TCP connections brokered by a TURN 
server (each Lambda worker makes an outgoing connection to 
the server), while PyWren suggests that nodes write to and read 
from S3, a network blob store. Some of us have developed stor-
age systems like Pocket [7] for ephemeral data storage between 
workers. However, the latency and throughput limitations intro-
duced by indirect communication (and by mediating inter-node 
communications through a network file system) are a disquali-
fier for many applications.

Our preliminary results suggest a more hopeful story for the 
ability of swarms of cloud functions to tackle communication-
heavy workloads, even on current platforms. We have found 
that on AWS Lambda, workers can establish direct connections 
between one another, and have been able to communicate at up 
to 600 Mbps using standard NAT-traversal techniques. Figure 4 
shows a distribution of achieved network throughputs at five 
different send rates. For each send rate, we started 600 workers 
divided into 300 sender-receiver pairs, and each sender trans-
mits UDP datagrams to its pair at that rate for 30 seconds. To be 
sure, these results indicate variable and unpredictable network 
performance, but we believe that by designing appropriate 
protocols and abstractions and failover strategies, direct worker 
communication can enable a myriad of HPC applications on top 
of cloud-function platforms.

Our main motivation for this investigation is to build a 3D ray-
tracing engine on gg, with the goal of rendering complex scenes 
with low latency. Currently, the artists who work on 3D scenes 
rely on high-end machines to iterate on their work—scenes that 
require tens or sometimes hundreds of gigabytes of memory and 
take hours to render. Often, the artists must limit the complex-
ity of these scenes (geometry and texture data) by the amount 
of RAM it is feasible to put in one workstation. For rendering 
the same scene on RAM-constrained cloud functions, the scene 
data has to be spread over the workers, which in turn requires 
low-latency, high-throughput communication between work-
ers to achieve the desired performance. Only further work will 
tell whether this application can successfully be parallelized to 
thousands of parallel cloud functions.

Conclusion
We have described gg, a framework that helps developers build 
and execute burst-parallel applications. gg presents a light-
weight, portable abstraction: an intermediate representation 
(IR) that captures the future execution of a job as a composition 
of lightweight containers. This lets gg support new and existing 
applications in various languages that are abstracted from the 
compute and storage platform and from runtime features that 
address underlying challenges: dependency management, strag-
gler mitigation, placement, and memoization.

We suspect that cloud functions, as a computing substrate, are 
in a similar position to that of graphics processing units in the 
2000s. At the time, GPUs were designed solely for 3D graphics, 
but the community gradually recognized that they had become 
programmable enough to execute some parallel algorithms 
unrelated to graphics. Over time, this “general-purpose GPU” 
(GPGPU) movement created systems-support technologies and 
became a major use of GPUs, especially for physical simulations 
and deep neural networks.

Cloud functions may tell a similar story. Although intended for 
asynchronous microservices, we believe that with sufficient 
effort by the community, the same infrastructure is capable of 
broad and exciting new applications. Just as GPGPU comput-
ing did a decade ago, nontraditional “serverless” computing may 
have far-reaching effects.

For more information on this project, including our research 
paper, the code, and quick-start guides, please visit the gg web-
site at https://snr.stanford.edu/gg.
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