
www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 5

PROGRAMMINGOutsourcing Everyday Jobs to Thousands
of Cloud Functions with gg
S A D J A D F O U L A D I , F R A N C I S C O R O M E R O , D A N I T E R , Q I A N L I , A L E X O Z D E M I R ,
S H U V O C H A T T E R J E E , M A T E I Z A H A R I A , C H R I S T O S K O Z Y R A K I S , A N D K E I T H W I N S T E I N

Sadjad Fouladi is a PhD
candidate in computer science
at Stanford University, working
with Keith Winstein on topics in
networking, video systems, and

distributed computing. His current projects
include general-purpose lambda computing
and massively parallel ray-tracing systems.
sadjad@cs.stanford.edu

Francisco Romero is a PhD
student in electrical engineering
at Stanford University. His
interests are in computer
architecture and computer

systems. He has recently worked on in-memory
database systems for emerging storage
technologies, serverless computing, machine
learning inference systems, and datacenter
resource scheduling. faromero@stanford.edu

Dan Iter is a PhD student
at Stanford University. He
is advised by Professor Dan
Jurafsky and is a member of
the NLP Group and AI Lab.

He is interested in generative models for text
representation, relation extraction, knowledge-
base construction, and mental health
applications. Previously, Dan also worked on
lambda computing and virtualized storage for
datacenters. daniter@stanford.edu

Qian Li is a PhD student in
computer science at Stanford
University, advised by Professor
Christos Kozyrakis. She has
broad interests in computer

systems and architecture. Her current research
focuses on efficient resource management and
scheduling for heterogeneous cloud computing
platforms. Before coming to Stanford, Qian
received her Bachelor of Science from Peking
University. qianli@cs.stanford.edu

We introduce gg, a framework that helps people execute everyday
applications—software compilation, unit tests, video encoding,
or object recognition—using thousands of parallel threads on a

“serverless” platform to achieve near-interactive completion times. We envi-
sion a future where instead of running these tasks on a laptop, or keeping a
warm cluster running in the cloud, users push a button that spawns 10,000
parallel cloud functions to execute a large job in a few seconds from start.
gg is designed to make this practical and easy.

A third of a century ago, interactive personal computing changed the way the computers
were used and markedly increased global productivity. Nevertheless, even today, many
applications remain far from interactive: compiling a large software package can take hours;
processing an hour of 4K video typically needs more than 30 CPU-hours; and a single frame
from the animated movie Monsters University takes 29 hours to render [8]. Users who wants
to explore or tinker and desire feedback in seconds need to harness thousands of cores in
parallel, far exceeding the available compute power in laptops and workstations and leading
users towards rented compute resources in large-scale datacenters—the cloud.

However, outsourcing a job to thousands of threads in the cloud presents its own challenges.
For one, maintaining a warm cluster of thousands of CPU cores in the form of VMs is not
cost-effective for occasional short-lived jobs. Provisioning and booting a cluster of VMs on
current commercial services can also take several minutes, leaving end users with no practi-
cal option to scale their resource footprint on demand in an efficient and scalable manner.

Meanwhile, a new category of cloud-computing resources has emerged that offers finer
granularity and lower latency than traditional VMs: cloud functions, also called serverless
computing. Amazon’s Lambda service will rent a Linux container for a minimum of 100
ms, with a startup time of less than a second and no charge when idle. Google, Microsoft,
 Alibaba, and IBM have similar offerings.

Cloud functions were intended for asynchronously invoked microservices, but their granu-
larity and scale sparked our interest for a different use: as a burstable supercomputer-on-
demand. As part of building our massively parallel, low-latency video-processing system,
ExCamera [4], we found that thousands of cloud functions can be invoked in a few seconds
with inter-function communication over TCP, effectively providing something like a rented
10,000-core computer billed by the second. ExCamera’s unorthodox use of a cloud-functions
service has been followed by several subsequent systems, including PyWren [6], Sprocket [2],
Cirrus, Serverless MapReduce, and Spark-on-Lambda. These systems all launch a burst-
parallel swarm of thousands of cloud functions, all working on the same job, to provide
results to an interactive user.

Challenges of Building Burst-Parallel Applications
Despite the above, building new burst-parallel applications on thousands of cloud functions
has remained a difficult task. Each application must overcome a number of challenges
endemic to this environment: (1) workers are stateless and may need to download large

6  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

amounts of code and data on startup; (2) workers have limited runtime before they are killed;
(3) on-worker storage is limited but much faster than off-worker storage; (4) the number of
available cloud workers depends on the provider’s overall load and can’t be known precisely
upfront; (5) worker failures are more likely to occur when running at large scale; (6) libraries
and dependencies differ in a cloud function compared with a local machine; and (7) latency
to the cloud makes roundtrips costly.

In this article, we present gg, a general system designed to help application developers man-
age the challenges of creating burst-parallel cloud-function applications. Instead of directly
targeting a cloud-functions infrastructure, application developers express their jobs in gg’s
intermediate representation (gg IR), which abstracts the application logic from its placement,
schedule, and execution. This portable representation allows gg to run the same application
on a variety of compute and storage platforms, and provides runtime features that address
underlying challenges, such as dependency management, straggler mitigation, placement,
and memoization. Figure 1 illustrates the overall architecture of gg.

gg can containerize and execute existing programs, e.g., software compilation, unit tests,
video encoding, or searching a movie with an object-recognition kernel. gg does this with
thousands-way parallelism on short-lived cloud functions. In some cases, this yields consid-
erable benefits in terms of performance. For example, compiling the Inkscape graphics editor
on AWS Lambda using gg was almost 5x faster than an existing system (icecc) running on a
384-core cluster of warm VMs.

Alex Ozdemir is a PhD
student in computer science
at Stanford University. His
research interests span much
of theoretical computer

science and computer systems. aozdemir@
stanford.edu

Christos Kozyrakis is a
Professor in the Departments
of Electrical Engineering and
Computer Science at Stanford
University. His research

interests include resource-efficient cloud
computing, energy-efficient computing and
memory systems for emerging workloads, and
scalable operating systems. Kozyrakis has a
PhD in computer science from the University
of California, Berkeley. He is a Fellow of the
IEEE and ACM. kozyraki@stanford.edu

Shuvo Chatterjee currently
works at Google on account
security. Previously, he
worked at Square and Apple.
In between, he was a visiting

researcher at Stanford. His focus is primarily
on user security and privacy in large-scale
systems. He is a graduate of MIT. shuvo@
alum.mit.edu

Matei Zaharia is an Assistant
Professor of Computer Science
at Stanford University and Chief
Technologist at Databricks. He
works on computer systems for

data analysis, machine learning, and security
as part of the Stanford DAWN lab. Previously,
Matei started the Apache Spark project during
his PhD at UC Berkeley in 2009 and co-started
the Apache Mesos cluster manager. Matei’s
research work was recognized through the
2014 ACM Doctoral Dissertation Award for
the best PhD dissertation in computer science,
an NSF CAREER Award, the VMware Systems
Research Award, and best paper awards at
several conferences. matei@cs.stanford.edu

Figure 1: gg helps applications express their jobs in an intermediate representation that abstract the
 application logic from its placement, schedule, and execution, and provides back-end engines to execute
the job on different cloud-computing platforms.

Figure 2: An example thunk for preprocessing a C program, hello.c. The thunk is named by the hash of its
content, T0MEiRL. The hash starts with T to mark it as a thunk rather than a primitive value. Other thunks
can refer to its output by using this hash.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 7

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

Keith Winstein is an Assistant
Professor of Computer Science
(and, by courtesy, of Electrical
Engineering) at Stanford
University. He and his students

and colleagues made the Mosh (mobile
shell) tool, the Mahimahi network emulator,
the Sprout and Remy systems for computer-
generated congestion control, the Lepton
functional-compression tool used at Dropbox,
the ExCamera, Salsify, and Puffer systems for
video coding and transmission, the Pantheon
of Congestion Control, and gg. keithw@
cs.stanford.edu

Thunks: Transient Functional Containers
The heart of gg IR is an abstraction that we call a thunk. In the functional-programming
literature, a thunk is a parameterless closure that captures a snapshot of its arguments and
environment for later evaluation. The process of evaluating the thunk—applying the function
to its arguments and saving the result—is called forcing it [1].

Building on this concept, gg represents a thunk with a description of a container that identi-
fies, in content-addressed manner, an x86-64 Linux executable and all of its input data
objects. The container is hermetically sealed and meant to be referentially transparent; it is
not allowed to use the network or access unlisted objects or files. The thunk also describes
the arguments and environment for the executable and a list of tagged output files that it will
generate—the results of forcing the thunk. Figure 2 shows an example thunk for preprocess-
ing a C source file. Since the thunk captures the full functional footprint of a function, it can
be executed in any environment capable of running an x86-64 Linux executable.

All the objects, including the input files, functions, and thunks are named by their hashes.
More precisely, the name of an object has four components: (1) whether the object is a primi-
tive value (hash starting with V) or refers to the result of forcing some other thunk (hash
starting with T), (2) a SHA-256 hash of the value’s or thunk’s content, (3) the length in bytes,
and (4) an optional tag that names an object or a thunk’s output.

Because the objects are content-addressed, they can be stored on any mechanism capable of
producing a blob that has the correct name: durable or ephemeral storage (e.g., S3, Redis, or
Bigtable), a network transfer from another node, or by finding the object already available in
RAM from a previous execution.

From our experiences of working with the system, we expect gg thunks to be simple to imple-
ment and reason about, straightforward to execute, and well matched to the statelessness
and unreliability of cloud functions.

gg IR: A Lazily Evaluated Lambda Expression
The structure of interdependent thunks—essentially a lambda expression—is what defines
the gg IR. This representation exposes the computation graph to the execution engine, along
with the identities and sizes of objects that need to be communicated between thunks. For
example, the IR representing the expression Assemble(Compile(Preprocess(hello.c))) con-
sists of three thunks, as depicted in Figure 3. Each stage refers to the previous stage’s output
by using the thunk’s hash.

Figure 3: An example of gg IR consisting of three thunks for building a “Hello, World!” program that rep-
resents the expression Assemble(Compile(Preprocess(hello.c))) → hello.o. To produce the final
output hello.o, thunks must be forced in order from left to right. Other thunks, such as the link operation,
can reference the last thunk’s output using its hash, T42hGtG. Hashes have been shortened for display.

8  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

The IR allows gg to schedule jobs efficiently, mitigate the effect
of stragglers by invoking multiple concurrent thunks on the criti-
cal path, recover from failures by forcing a thunk a second time,
and memoize thunks to avoid repetitive work. This is achieved
in an application-agnostic, language-agnostic manner. Based on
the data exposed by the IR, back ends can schedule the forcing
of thunks, place thunks with similar data-dependencies or an
output-input relationship on the same physical infrastructure,
and manage the storage or transfer of intermediate results, with-
out roundtrips back to the user’s own computer.

Front-End Code Generators and Back-End
Execution Engines
Front ends are the programs that emit gg IR (Figure 1). Most
of the time, we expect the applications to write out thunks by
explicitly providing the executable and its dependencies. This
can be done through a command-line tool provided by gg (i.e., gg
create-thunk) or by using the C++ and Python SDKs that expose
a thunk abstraction and allow the developer to describe the
application in terms of thunks. For one application, software
compilation, we developed a technique called model substitution
that is designed to extract gg IR from an existing build system,
without actually compiling the software. In the next section, we
will describe the details of this technique.

The execution of gg IR is done by the back ends and requires
two components: an execution engine for forcing the individual
thunks, and a content-addressed storage engine for storing the
named blobs referenced or produced by the thunks. We imple-
mented five compute engines (a local machine, a cluster of warm
VMs, AWS Lambda, IBM Cloud Functions, and Google Cloud
Functions) and three storage engines (S3, Google Cloud Storage,
and Redis).

gg’s approach of abstracting front ends from back ends allows
the applications and the back-end engines to evolve and improve
independently. The developers can focus on building new appli-
cations on top of gg abstractions and, at the same time, benefit
from the improvements made to the execution back ends. More-
over, special-purpose execution engines can be built to match
the unique characteristics of a certain job without changing the
IR description of the application.

As an example, our default AWS Lambda/S3 back end invokes
a new Lambda for each thunk. Upon completion, a Lambda
uploads its outputs to S3 for other workers to download and
use. However, for applications like ExCamera that deal with
large input/output objects, the roundtrips to S3 can negatively
affect the performance. To improve the performance of such
applications, we made a “long-lived” AWS Lambda engine, where
each worker stays up until the whole job finishes and seeks out
new thunks to execute. The execution engine keeps an index
of objects present on each worker’s local storage and uses that
information to place thunks on workers with the most data avail-
able, in order to minimize the need to fetch dependencies from
the storage back end.

Software Compilation with gg
Software compilation has long been a prime example of non-
interactive computing. For instance, compiling the Chromium
Web browser, one of the largest open-source projects, takes more
than four hours on a 4-core laptop. Many solutions have been
developed to leverage warm machines in a local cluster or cloud
datacenter (e.g., distcc or icecc). We developed such an applica-
tion on top of gg that can outsource a compilation job to thou-
sands of cloud functions.

Build systems are often large and complicated. The application
developers have spent a considerable amount of time crafting
Makefiles, CMakeLists.txt files, and build.ninja files for their
projects, and manually converting them to gg IR is virtually
impossible. We developed a technique called model substitution
that can automatically extract a gg IR description from an exist-
ing build system.

We run the build system with a modified PATH so that each stage
is replaced with a stub: a model program that understands the
behavior of the underlying stage well enough so that when the
model is invoked in place of the real stage, it can write out a
thunk that captures the arguments and data that will be needed
in the future; forcing the thunk will then produce the exact
output that would have been produced during actual execution.
We used this technique to infer gg IR from the existing build
systems for several large open-source applications, including

Local (make) Distributed (icecc) Distributed (gg)
1 core 48 cores 48 cores AWS Lambda

FFmpeg 06m 9s 20s 01m 03s 44s±04s

GIMP 06m 48s 49s 02m 35s 01m 38s±03s

Inkscape 32m 34s 01m 40s 06m 51s 01m 27s ±07s

Chromium 15h 58m 20s 38m 11s 46m 01s 18m 55s ±10s

Table 1: Comparison of cold-cache build times in different scenarios. gg on AWS Lambda is competitive with or faster than using conventional outsourcing
(icecc) and, in the case of the largest programs, is 2–5 faster. This includes both the time required to generate gg IR from a given repository using model
substitution and the time needed to execute the IR.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 9

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

OpenSSH, the FFmpeg video system, the GIMP image editor,
the Inkscape vector graphics editor, and the Chromium browser,
with no changes to the original build system or user interven-
tion. Table 1 shows a summary of the results for four open-
source projects. gg on AWS Lambda is about 2–5 faster than
a conventional tool (icecc) in building medium- and large-sized
software packages.

As an example, we will go through the steps of building the
FFmpeg video system with gg. First, the user clones the repo and
execute ./configure script to generate the Makefiles:

sadjad@˜$ git clone https://git.ffmpeg.org/ffmpeg.git

sadjad@˜$ [install ffmpeg build dependencies]

sadjad@˜$ cd ffmpeg

sadjad@ /̃ffmpeg$./configure --disable-doc --disable-x86asm

Next, the user runs gg init in the program’s root, which will cre-
ate a directory named gg. This directory will contain the gener-
ated thunks and local cache entries:

sadjad@ /̃ffmpeg$ gg init

To compile the project with gg, first we need to extract an IR
description from the build system, which is done by running the
normal build command (make in this case), prefixed by gg infer:

sadjad@ /̃ffmpeg$ gg infer *make -j$(nproc)*

This command will execute the underlying build system, but it
modifies the PATH so that each stage of the build is replaced with
a model program, which writes out a thunk for that stage. After
the IR generation is done, the build targets are created, but their
contents are not what we would normally expect:

sadjad@ /̃ffmpeg$ cat ffmpeg

#!/usr/bin/env gg-force-and-run

Te6aLo5FtpPyyGY.CsF8PHGY5WS61AlmbcUNGA1tG9Cs00000179

This is a placeholder, and it expresses that the actual ffmpeg
binary is the output of the thunk with the hash Te6aLo5F... (the
content of this thunk can be inspected by using the gg describe
utility). Running this script forces this thunk, replaces itself
with the output, and then executes it. The user can also manually
force this thunk by using the gg force utility:

sadjad@ /̃ffmpeg$ gg force --jobs *1500* --engine *lambda*

ffmpeg

* Loading the thunks... done (233 ms).

* Uploading 4663 files (81.8 MiB)... done (6985 ms).

 ...

* Downloading output file (16.7 MiB)... done (1131 ms).

This command specifies that the user wants to run this job with
1500-way parallelism on AWS Lambda. First, all the necessary
input files are uploaded to the storage engine in one shot. Then

the program forces all the necessary thunks recursively until
obtaining the final result. After the output is downloaded, the
ffmpeg binary can be executed, as if it were built on the local
machine:

sadjad@ /̃ffmpeg$./ffmpeg

ffmpeg version N-94028-gb8f1542dcb Copyright (c) 2000-2019

the FFmpeg developers

Unit Testing with gg
Software test suites are another set of applications that can ben-
efit from massive parallelism, as each test is typically a stand-
alone program that can be run in parallel with other tests, with
no inter-dependencies. Using gg’s C++ SDK, we implemented a
tool that can generate gg IR for unit tests written with Google
Test, a popular C++ test framework used by projects like LLVM,
OpenCV, Chromium, Protocol Buffers, and the VPX video codec
library.

For code bases with large numbers of test cases, this can yield
major improvements. For example, the VPX video codec library
contains more than 7,000 unit tests, which take more than 50
minutes to run on a 4-core machine. Using the massive parallel-
ism available, gg is able to execute all of these test cases in paral-
lel in less than four minutes, with 99% of the test cases finishing
within the first 30 seconds. From a developer’s point of view, this
improves turnaround time and translates into faster discovery
of bugs and regressions.

In addition to software compilation and unit testing, we ported
a number of other programs to emit gg IR, including an imple-
mentation of ExCamera on gg that, unlike the original imple-
mentation, supports memoization and failure recovery, an
object recognition task with TensorFlow, and a Fibonacci series
program that demonstrates gg abilities on handling dynamic
execution graphs. For the details of these applications, we refer
the reader to our USENIX ATC ’19 paper [3].

Figure 4: The distribution of achieved network throughputs between
pairs of workers at five different send rates on AWS Lambda. Each point
corresponds to a sender-receiver pair, and the lines are labeled with their
corresponding send rates.

10  FA L L 20 19 VO L . 4 4 , N O. 3 www.usenix.org

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

Next Steps: Direct Communication
between Workers
Many of the applications that can benefit from burst-parallel
execution are not embarrassingly parallel—they can have
complex dataflow graphs and require moving large amounts of
data between workers. It has generally been understood that
Lambdas cannot accept incoming network connections [5]. As
a result, Lambda-computing tools have retreated to exchanging
data between workers only indirectly. For example, ExCamera
achieves this through TCP connections brokered by a TURN
server (each Lambda worker makes an outgoing connection to
the server), while PyWren suggests that nodes write to and read
from S3, a network blob store. Some of us have developed stor-
age systems like Pocket [7] for ephemeral data storage between
workers. However, the latency and throughput limitations intro-
duced by indirect communication (and by mediating inter-node
communications through a network file system) are a disquali-
fier for many applications.

Our preliminary results suggest a more hopeful story for the
ability of swarms of cloud functions to tackle communication-
heavy workloads, even on current platforms. We have found
that on AWS Lambda, workers can establish direct connections
between one another, and have been able to communicate at up
to 600 Mbps using standard NAT-traversal techniques. Figure 4
shows a distribution of achieved network throughputs at five
different send rates. For each send rate, we started 600 workers
divided into 300 sender-receiver pairs, and each sender trans-
mits UDP datagrams to its pair at that rate for 30 seconds. To be
sure, these results indicate variable and unpredictable network
performance, but we believe that by designing appropriate
protocols and abstractions and failover strategies, direct worker
communication can enable a myriad of HPC applications on top
of cloud-function platforms.

Our main motivation for this investigation is to build a 3D ray-
tracing engine on gg, with the goal of rendering complex scenes
with low latency. Currently, the artists who work on 3D scenes
rely on high-end machines to iterate on their work—scenes that
require tens or sometimes hundreds of gigabytes of memory and
take hours to render. Often, the artists must limit the complex-
ity of these scenes (geometry and texture data) by the amount
of RAM it is feasible to put in one workstation. For rendering
the same scene on RAM-constrained cloud functions, the scene
data has to be spread over the workers, which in turn requires
low-latency, high-throughput communication between work-
ers to achieve the desired performance. Only further work will
tell whether this application can successfully be parallelized to
thousands of parallel cloud functions.

Conclusion
We have described gg, a framework that helps developers build
and execute burst-parallel applications. gg presents a light-
weight, portable abstraction: an intermediate representation
(IR) that captures the future execution of a job as a composition
of lightweight containers. This lets gg support new and existing
applications in various languages that are abstracted from the
compute and storage platform and from runtime features that
address underlying challenges: dependency management, strag-
gler mitigation, placement, and memoization.

We suspect that cloud functions, as a computing substrate, are
in a similar position to that of graphics processing units in the
2000s. At the time, GPUs were designed solely for 3D graphics,
but the community gradually recognized that they had become
programmable enough to execute some parallel algorithms
unrelated to graphics. Over time, this “general-purpose GPU”
(GPGPU) movement created systems-support technologies and
became a major use of GPUs, especially for physical simulations
and deep neural networks.

Cloud functions may tell a similar story. Although intended for
asynchronous microservices, we believe that with sufficient
effort by the community, the same infrastructure is capable of
broad and exciting new applications. Just as GPGPU comput-
ing did a decade ago, nontraditional “serverless” computing may
have far-reaching effects.

For more information on this project, including our research
paper, the code, and quick-start guides, please visit the gg web-
site at https://snr.stanford.edu/gg.

Acknowledgments
We thank the USENIX ATC reviewers and our shepherd, Ed
Nightingale, for their helpful comments and suggestions. We are
grateful to Geoffrey Voelker, George Porter, Anirudh Sivaraman,
Zakir Durumeric, Riad S. Wahby, Liz Izhikevich, and Deepti
Raghavan for comments on versions of our research paper. This
work was supported by NSF grant CNS-1528197, DARPA grant
HR0011-15-20047, and by Google, Huawei, VMware, Dropbox,
Facebook, and the Stanford Platform Lab.

www.usenix.org FA L L 20 19 VO L . 4 4 , N O. 3 11

PROGRAMMING
Outsourcing Everyday Jobs to Thousands of Cloud Functions with gg

References
[1] H. Abelson, G. J. Sussman, with J. Sussman, Structure and
Interpretation of Computer Programs, 2nd ed. (MIT Press, 1996).

[2] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket:
A Serverless Video Processing Framework,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC ’18), ACM,
pp. 263–274.

[3] S. Fouladi, R. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyra-
kis, M. Zaharia, and K. Winstein, “From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Func-
tional Containers,” in Proceedings of the 2019 USENIX Annual
Technical Conference (USENIX ATC ’19), USENIX Association,
2019.

[4] S. Fouladi, R. S. Wahby, B. Shacklett, K.V. Balasubrama-
niam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K.
Winstein, “Encoding, Fast and Slow: Low-Latency Video Pro-
cessing Using Thousands of Tiny Threads,” in Proceedings of
the 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’17), USENIX Association, 2017,
pp. 363–376.

[5] J. M. Hellerstein, J. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless Computing:
One Step Forward, Two Steps Back,” in CIDR 2019, 9th Biennial
Conference on Innovative Data Systems Research, 2019.

[6] E. Jonas, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the Cloud: Distributed Computing for the 99%,” in Proceedings
of the 8th Symposium on Cloud Computing (SoCC 2017).

[7] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Server-
less Analytics,” in Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’18)
USENIX Association, 2018, pp. 427–444.

[8] D. Takahashi, “How Pixar Made Monsters University, Its
Latest Technological Marvel,” VentureBeat, December 2018:
https://venturebeat.com/2013/04/24/the-making-of-pixars
-latest-technological-marvel-monsters-university/.

https://venturebeat.com/2013/04/24/the-making-of-pixars-latest-technological-marvel-monsters-university
https://venturebeat.com/2013/04/24/the-making-of-pixars-latest-technological-marvel-monsters-university

